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Noncommutative Dynamics of Random Operators
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We continue our program of unifying general relativity and quantum mechanics in
terms of a noncommutative algebra A on a transformation groupoid � = E × G where
E is the total space of a principal fibre bundle over spacetime, and G a suitable group
acting on �. We show that every a ∈ A defines a random operator, and we study the
dynamics of such operators. In the noncommutative regime, there is no usual time but,
on the strength of the Tomita–Takesaki theorem, there exists a one-parameter group
of automorphisms of the algebra A which can be used to define a state dependent
dynamics; i.e., the pair (A, ϕ), where ϕ is a state on A, is a “dynamic object.” Only if
certain additional conditions are satisfied, the Connes–Nikodym–Radon theorem can be
applied and the dependence on ϕ disappears. In these cases, the usual unitary quantum
mechanical evolution is recovered. We also notice that the same pair (A, ϕ) defines
the so-called free probability calculus, as developed by Voiculescu and others, with the
state ϕ playing the role of the noncommutative probability measure. This shows that in
the noncommutative regime dynamics and probability are unified. This also explains
probabilistic properties of the usual quantum mechanics.

KEY WORDS: general relativity; quantum mechanics; unification theory; noncom-
mutative dynamics; random operators; free probability.

1. INTRODUCTION

In a series of works (Heller et al., 1997, 2000; Heller and Sasin, 1999) we
have formulated a program to unify general relativity and quantum mechanics
based on a noncommutative algebra on a transformation groupoid. In (Heller
et al., 2004a) we have tested the program by constructing a simplified (but still
mathematically interesting) model and computing many of its details, and in
(Heller et al., 2004b) we have discussed its observables with a special emphasis
on the position and momentum observables. In the present work, we study its
dynamic and probabilistic aspects.
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Let us first, for the reader’s convenience, outline the main architectonic
properties of our model. We construct a transformation groupoid in the following
way. Let Ẽ be a differential manifold and G̃ a group acting smoothly and freely
on Ẽ. We thus have the bundle (Ẽ, πM,M = Ẽ/G̃), and we can think of it as of
the frame bundle, with G̃ the Lorentz group, over spacetime M . To simplify our
construction, we choose a finite subgroup G of G̃ and a cross section S : M → Ẽ

of the above bundle (it need not be continuous). Then we define E = ∪x∈MS(x)G.
The free action of G (to the right) on E, defines the transformation groupoid
structure on the Cartesian product � = E × G [for details see (Heller et al.,
2004a)]. The choice of the cross section S : M → Ẽ can be regarded as the choice
of a gauge for our model.

The elements of the groupoid � represent symmetry operations of the model.
The noncommutative algebraA = C∞(�, C) of smooth complex valued functions
on � (if necessary, we shall assume that they vanish at infinity) with convolution as
multiplication is an algebraic counterpart of this symmetry space. In the previous
works, we have reconstructed geometry of the groupoid � = E × G in terms of
this algebra. By projecting the full geometry onto the E-direction we recover
the usual spacetime geometry and, consequently, the standard general relativity.
The regular representation πp : A → End(Hp) of the groupoid algebra A in a
Hilbert space Hp, for p ∈ E, gives the G-component of the model which can be
considered as its quantum sector.

In the present paper, we show that every bounded function a ∈ A defines a
random operator (Section 2), and we study the dynamics of these operators (Sec-
tion 3). This is not a trivial task. Noncommutative spaces are nonlocal entities.
In general, the concepts such as that of point and its neighborhood are meaning-
less in them. Therefore, in the noncommutative setting the concept of the usual
“coordinate time” is not applicable, and the question concerning the existence
of dynamics arises. However, as shown by Alain Connes (1994) the algebra M
admits, on the strength of the Tomita–Takesaki theorem, a one-parameter group
of automorphisms of M (called the modular group), and this group can be used to
define a “modular dynamics” (Connes and Rovelli, 1994). But, strangely enough,
this dynamics depends on the state ϕ on the algebra M, and only if certain addi-
tional conditions are satisfied, the dependence on ϕ disappears, and one recovers
the usual unitary evolution, well known from quantum mechanics (Section 4).

In Section 5, we briefly recall the noncommutative probability calculus (called
also free probability calculus) as it was introduced by Voiculescu (1985), and
developed by others (Voiculescu et al., 1992; Biane, 1998). Such a probability is
defined as the pair (M, ϕ) where M is an associative algebra (with unity), and
ϕ is a state on M, i.e., a positive linear functional on M such that ϕ(1) = 1.
We can think of ϕ as of a probability measure on M. We thus see that the pair
(M, ϕ) is both the “dynamic object” and the “probabilistic object.” It follows that,
in our model, every dynamics is probabilistic (in the generalized sense), and every
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(generalized) probability has a dynamic aspect. This important property of the
noncommutative regime, supposedly governing the fundamental level of physics,
is inherited by the quantum sector of our model. In this way, the probabilistic
character of the standard quantum mechanical (unitary) evolution is explained.

Finally, in Section 6, we briefly comment on the obtained results.

2. ALGEBRA OF RANDOM OPERATORS

Let � = E × G be the groupoid described in the Introduction. In this paper,
unless explicitly stated otherwise, G will always be a finite group. We consider
the algebra A = C∞(�, C) of smooth complex valued functions on � with the
convolution as multiplication. If a, b ∈ A, the convolution is defined as

(a ∗ b)(γ ) =
∑

γ1∈�dγ

a
(
γ ◦ γ −1

1

)
g(γ1)

where γ, γ1 ∈ �, and �dγ denotes the fiber of the groupoid � over d(γ ) =
d(p, g) = p ∈ E with g ∈ G [for details see (Heller et al., 2004a)].

Every a ∈ A generates a random operator ra = (πp(a))p∈E . It acts on a
collection {Hp}p∈E of Hilbert spaces Hp = L2(�p). Here �p denotes the fiber
of � consisting of all its elements “ending at” p ∈ E. Every operator πp(a) is a
bounded operator on Hp.

An operator ra to be random must satisfy the following conditions:
(1) If ξp, ηp ∈ Hp then the function E → C given by

E � p 	→ ((ra)pξp, ηp),

for a ∈ A, is measurable in the usual sense (i.e., with respect to the standard
manifold measure on E). In our case this condition is always satisfied.

(2) The operator ra must be bounded, i.e., ||ra|| < ∞ where

‖ra‖ = ess sup‖πp(a)‖.
Here “ess sup” denotes essential supremum, i.e., supremum modulo zero measure
sets. Let us notice that if, in our case, a is a bounded function, condition (2) is
satisfied, and if a is continuous, condition (1) is satisfied.

Let M be the ∗-algebra of equivalence classes (modulo equality almost
everywhere) of bounded random operators (Ap)p∈E equipped with the following
operations:

1. (A + B)p = Ap + Bp,

2. (A∗)p = (Ap)∗,
3. (A · B)p = Ap · Bp,

A,B ∈ M, p ∈ E. The well known result is that M forms a von Neumann
algebra, i.e., M = M′′ where M′′ denotes the double commutant of M (Connes,
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1994, p. 52). This result clearly applies to our case, i.e., random operators ra

defined above generate a von Neumann algebra. We will call it the von Neumann
algebra of the groupoid �.

In the matrix representation we have (Heller et al., 2004a)

L∞(�, C) � L∞(M) ⊗ Mn×n(C).

In this representation, the von Neumann algebra of random operators assumes the
form

M � L∞(E) ⊗ Mn×n(C) � Mn×n(L∞(E)).

Let us now recall some terminology. Let ϕ be a positive linear functional
on a von Neumann algebra M: ϕ is said to be faithful if 0 �= x ∈ M implies
ϕ(x) > 0; ϕ is said to be normal if ϕ(x) = supϕ(xi) provided x is the supremum
of a monotonically increasing net {xi} in the collection of positive operators in
M; ϕ is called tracial if ϕ(x∗x) = ϕ(xx∗) for every x ∈ M; ϕ is said to be a state
if it is positive and normed to unity.

A von Neumann algebra M is called finite if it admits a faithful, normal and
tracial state.

In our case, continuous functionals on M are of the following form

ϕ(ra) =
∫

Tr(ra(p)ρ(p)) dµE(p)

for ra ∈ M, where ρ ∈ L1(E) ⊗ Mn×n(C) � Mn×n(L1(E)) or, equivalently, with
the dependence on x ∈ M clearly displayed

ϕ(ra) =
∫

M

∑
g∈G

Tr(r(s(x) · g) · ρ(s(x) · g)) dµ(x).

It is obvious that there exists a tracial functional of this form, namely the one with
ρ(p) = f (x)1 where f ∈ L1(M), x = πM(p)

For ϕ(ra) to be positive, ρ(p) must be a positive matrix, i.e., having all its
eigenvalues non-negative, for almost all p ∈ E. If all eigenvalues of ρ(p) are
positive, the state is faithful.

Let us define the normalization: if ra(p) = 1, for every p ∈ E, then

ϕ(ra) =
∫

M

∑
g∈G

Tr(ρ(s(x) · g)) dµ(x) = 1.

Proposition 1. The von Neumann algebra M of the groupoid � is finite.

Proof: Let us choose ρ(s(x) · g) = f (x) · 1 where f ∈ L1(M), and f > 0. ϕ is
clearly positive and faithful. Then normalization condition reduces to the following
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formula

ϕ(ra) =
∫

M

nf (x) dµ(x) = 1,

where n is the rank of the group G. Therefore, ϕ is a state. It is also a normal state
since every fiber in � is finite, and the normality is a simple consequence of the
Lebesgue majorized convergence theorem. �

3. EVOLUTION OF RANDOM OPERATORS

Now, we define the Hamiltonian H
ϕ
p = Logρ

ϕ
p , and the Tomita–Takesaki

theorem gives us the evolution of random operators dependent on the state ϕ in
terms of the one-parameter group of automorphisms σ

ϕ
s , called modular group

(Connes, 1994, pp. 43–44, 496–470)

σϕ
s (ra(p)) = eisH

ϕ
p ra(p)e−isH

ϕ
p (1)

for every p ∈ E.
Eq. (1) can also be written in the form

ih
d

ds
|s=0σ

ϕ
s (ra(p)) = [

ra(p),Hϕ
p

]
. (2)

This equation describes the state dependent evolution of random operators with
respect to the parameter s ∈ R of the modular group.

Our aim is now to obtain the state independent evolution by applying to our
case the construction based on the Connes–Nicodym–Radon theorem (Sunder,
1987, p. 74). Let us first recall some concepts involved in this construction. Let
AutM be the group of all automorphisms of an algebra M, and λ ∈ AutM.
An automorphism λ is said to be inner if there exists an element u ∈ U , where
U = {u ∈ M : uu∗ = u∗u = 1} is the unitary group of the algebra M, such that

λ(b) = ubu∗

for every b ∈ M. Let InnM denote the group of inner automorphisms of M. We
define two automorphisms λ1 and λ2 to be inner equivalent if

λ1(b) = uλ2(b)u∗,

for every b ∈ M, and the group OutM of outer automorphism as

OutM := AutM/InnM.

Let σ
ϕ
s , σ

ψ
s ∈ AutM for a fixed t ∈ R, and let us further assume that there

exists the unitary element u ∈ U such that

σψ
s = uσϕ

s u∗.
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Hence,

[σψ
s ] = [σϕ

s ]

where square brackets denote the equivalence class of a given automorphism. If
we define the canonical homomorphism

δ : R → OutM
by

δ(s) = [
σϕ

s

]
,

we obtain the modular group which is now state independent.
In our case, we clearly have the state dependent evolution as described by

Eq. (1). Could it be made state independent by the above procedure? Eq. (1) implies
that σ

ϕ
s ∈ InnM, and consequently δ(s) = 1. This means that the one-parameter

group σs independent of state is trivial.
This can also be deduced from the Dixmier–Takesaki theorem (Connes, 1994,

p. 470). Let us define

S(M) = {S0 ∈ R : σ
ϕ

S0
∈ InnM}.

The Dixmier–Takesaki theorem says that S(M) = R if and only if the algebra
M is finite (or semifinite, if the theorem is formulated for weights rather than for
states, see below). And, as we know from the previous section, this is indeed the
case.

The above result means that every σ
ϕ
s is unitary equivalent to ids . In other

words, the state independent time does exist, but nothing changes in it. This fact is
clearly the consequence of the oversimplified character of our model; in particular,
of the fact that the group G is finite.

4. QUANTUM AND CLASSICAL DYNAMICS

So far we have shown that on the fundamental (noncommutative) level we
have a state dependent “modular dynamics” which (at least in more realistic
models) can be made state independent. Now, the questions arise: what do we get
of this dynamics, if we go to the quantum sector and the spacetime sector of our
model, respectively?

To answer the first of these questions, let us restrict the von Neumann algebra
M to its subalgebra

MG = {f ◦ prG : f ∈ CG}
where prG : � → G is the obvious projection. For every a ∈ MG, the random
operator ra = (πp(a))p∈E is a family of operators which can be identified with
each other (on the strength of the natural isomorphism �p � G). Therefore, any
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such ra is a family projectible to a single operator on HG = L2(G). The operator
on HG to which ra projects will be denoted by aG. Let us notice that it is not a
random operator.

For aG ∈ EndHG, Eq. (2) assumes the form

ih
d

ds
|s=0(σϕ

s (aG)) = [aG,Hϕ].

The only difference between this equation and the Heisenberg equation, well
known from quantum mechanics, is that this equation depends on the state ϕ.
But even this difference disappears for more realistic models in which Connes–
Nikodym–Radon theorem gives the state independent modular evolution. In these
cases, the standard quantum mechanical dynamics is recovered.

Now, let us turn to the question of what do we obtain by going to the
spacetime (macroscopic) sector of our model. In (Heller et al., 2004a) we have
shown that the answer can be obtained by the averaging procedure. Let us consider
the von Neumann algebra M in its matrix representation, and let Ma be a matrix
corresponding to the function a. Then by averaging of Ma we understand

〈Ma(p)〉 = 1

|G|TrMa

where |G| denotes the rank of G.
In (Heller et al., 2004b) we have proved that

πpg(a) = Lgπp(a)Lg−1

where Lg denotes the left translation by g ∈ G. By applying the trace operation
to both sides of this equality we obtain

Tr(πpg(a)) = Tr(πp(a)),

i.e., the averaging operation gives a function on M , and Eq. (1) reduces to

〈σϕ
s (ra(p)〉 = 〈ra(p)〉.

We see that the dependence on ϕ has disappeared. This equation shows that
the modular dynamics (with respect to the parameter s) is a quantum phe-
nomenon which is not directly visible from the spacetime perspective. The “mod-
ular time” s is related to the usual “coordinate time” t by the dependence on
p = (x0, x1, x2, x3, δ0, δ1, δ2, δ3) ∈ E.

5. DYNAMICS AND PROBABILITY

The fact that dynamics in our model is given in terms of random operators
discloses a link between dynamics and probability. This link goes much further.
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If X is a compact topological space then there is a strict correspondence
between finite Borel measures on X and linear forms on the Banach space C(X) of
continuous functions on X with the norm: ‖f ‖ = sup|f (x)|, f ∈ C(X), x ∈ X.
Instead of considering the measure space (X,m), where m is a finite Borel measure
on X, we can, equivalently, consider the Banach algebra C(X) together with a
distinguished linear form ϕ on it, i.e., the pair (C(X), ϕ). If, additionally, we
impose on ϕ a suitable normalization condition, this pair will be a functional
counterpart of the probability space. This is the starting point of a generalization
to the noncommutative concept of probability. In place of the Banach algebra
C(X) we consider any associative, not necessarily commutative, unital algebra A.
For generality reasons we assume that it is a complex valued algebra. Let further
ϕ be a linear (complex valued) form on A. If it is a noncommutative algebra,
the pair (A, ϕ) is called the noncommutative probability space. Noncommutative
probability is also called free probability (Voiculescu et al., 1992; Biane, 1998).

However, the above formulated noncommutative probability is too general
for practical purposes. Some additional conditions are required. Also at this stage
motivations come from the commutative case. Let H be a separable Hilbert space,
and T a bounded self-adjoint operator on H. It can be shown that

1. There exists the unique (up to equivalence) measure on the interval I =
[−‖T ‖,‖T ‖] such that

f (T ) = 0 ⇔
∫

|f |dµ = 0,

2. The algebra M of operators onH having the form f (T ), for some bounded
Borel function f is a von Neumann algebra (generated by T ).

M is a commutative von Neumann algebra naturally isomorphic to the algebra
L∞(I, µ) of bounded measurable functions (modulo equality almost everywhere)
on the interval I .

In the view of the above, it is natural to regard the theory of von Neumann
algebras as a noncommutative counterpart of the measure theory, and to agree for
the following definition. The noncommutative probability space is a pair (M, ϕ)
where M is a von Neumann algebra and ϕ a faithful and normal state on M
(Biane, 1998, Sec. 4). In contrast to the commutative case in which there is
only one interesting measure (the Lebesgue measure), the noncommutative case
exhibits the great richness and complexity.

As we have seen in Section 3, the pair (M, ϕ) is a dynamical object in the
sense that it determines the modular evolution dependent on the state ϕ. But if
ϕ satisfies certain natural (and, in general, easy to satisfy) conditions, the same
pair is a “probabilistic object.” Therefore, every such dynamics is probabilistic,
and every such probabilistic space has a dynamic aspect. Two structures, which
in the standard mathematics were independent of each other, now are unified.
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The state ϕ plays now the role of the probability measure. It is a remarkable fact
that it also determines the dynamical regime. If we change from the probability
measure ϕ to the probability measure ψ , then we automatically go from the
dynamic regime σ

ϕ
s to the dynamic regime σ

ψ
s . Only when we succeed in obtaining

the nontrivial, state independent evolution δ : R → OutM, we get the unique
unitary probabilistic dynamics typical for quantum mechanics (as described by the
Heisenberg equation). Let us notice, however, that the state ϕ can be interpreted
as an expectation value. Therefore, for two (state dependent) inner equivalent
modular evolutions this expectation value is the same, i.e., state independent
(at least for tracial states).

6. COMMENTS

It is interesting to notice that both dynamics and probability are, from the
very beginning, strictly connected with unitarity. Both dynamics and probability
are implemented by a von Neumann algebra which can be defined as an algebra of
operators on a Hilbert space that are invariant with respect to the group of unitary
transformations. This beautifully harmonizes with the fact well known from the
standard quantum mechanics that unitarity is closely related to the probabilistic
evolution of quantum systems.

To the physicist it might seem astonishing that the modular evolution is
originally dependent on a state of the considered system. In fact, it was Carlo
Rovelli who proposed a quantum mechanical model with a state dependent time
(Rovelli, 1993) and, together with Alain Connes, tried to extend this concept to
generally covariant theories, by making the time flow depending on the thermal
state of the system (Connes and Rovelli, 1994). Our approach is more radical.
We closely follow the conclusions of the Tomita–Takesaki theorem, and assume
that on the fundamental level of physics dynamics is indeed state dependent,
and only when we move to lower energy levels, the von Neumann algebra M
becomes more “coarse” (in the sense that AutM can be replaced by OutM), the
Connes–Nicodym–Radon theorem can be applied and time independent dynamics
emerges.

In our model this evolution is trivial but, as we have seen, this follows from
the simplified character of the model. The Sunder’s theorem (Sunder, 1987, p. 88)
gives us even more information on the nonexistence of state independent change
in our model. The theorem is formulated for weights rather than for states, but
it a fortiori applies to states. A von Neumann algebra is said to be semifinite if
it admits a faithful, normal and tracial weight [for definitions see (Sunder, 1987,
p. 52)]. Roughly speaking a weight ϕ on M is semifinite if there are sufficiently
many elements of M at which ϕ assumes a finite value. The theorem asserts that
the following conditions for a von Neumann algebra M are equivalent:

(i) M is semifinite;
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(ii) σ
ϕ
t is inner for some faithful, normal and semifinite weight ϕ on M;

(iii) σ
ϕ
t is inner for every such weight.

In order to have a nontrivial state independent evolution the von Neumann
algebra M cannot be semifinite. This can be obtained by using in our model a
locally compact group. In such a case, one cannot integrate along G to reduce the
density ρ(s(x) · g) to the form f (x) · 1, and the algebra M could be nonsemifinite,
even if G is a unimodular group.

Our model has disclosed quite unexpected connection between noncommu-
tative dynamics and noncommutative probability. The pair (M, ϕ) is both the
“dynamic object” and the “probabilistic object.” This fact throws some light onto
the “strange” dependence of the dynamics of random operators on the state ϕ.
The state ϕ is also a probability measure: if we switch to another state, we switch
to another probability measure, and it seems rather natural that together with the
change of the probability measure, the dynamical regime of random operators
changes as well. Two concepts—dynamics and probability—that are separate in
the usual circumstances, in the noncommutative domain turn out to be but two
aspects of the same mathematical structure.
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